If it's not what You are looking for type in the equation solver your own equation and let us solve it.
400x-x^2=10000
We move all terms to the left:
400x-x^2-(10000)=0
We add all the numbers together, and all the variables
-1x^2+400x-10000=0
a = -1; b = 400; c = -10000;
Δ = b2-4ac
Δ = 4002-4·(-1)·(-10000)
Δ = 120000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120000}=\sqrt{40000*3}=\sqrt{40000}*\sqrt{3}=200\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(400)-200\sqrt{3}}{2*-1}=\frac{-400-200\sqrt{3}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(400)+200\sqrt{3}}{2*-1}=\frac{-400+200\sqrt{3}}{-2} $
| 25⋅2x=256 | | M^2(m+7)=I0 | | X=4(11-x)-5 | | .7x-2.2=3.6x+2.9 | | 2.6x=4.6 | | 2(3x–1)=6(2+x) | | 9x-18-(3x-5)=-40 | | 9a+3a=-1 | | X+0.2x=42 | | x^2=11/5 | | 10t+9(2t+7)=7t | | 10x+(-6)(2x+7)+10=15 | | 125^(3x-1)=0.2^(2x) | | |2x|-4=8 | | -0.10(16)+0.10x=0.05(x-18) | | 4x^2+27x+90=0 | | 3x+2(7+4x–5)=2(2x+3–x+8) | | 0.16y+0.02(y+8000)=700 | | 2(6x+4+5x+2+x+3)=2(4x+25)* | | -3(3x+15)=1(10+x)=35 | | D^2-8d+9=0 | | 3(3x+1)=6(8-6x) | | 8x+7+3(4x+5)=2x+184 | | 25–3x=4 | | 2x^2+28x=-192 | | T-6.38;t=8.006 | | S=19v2 | | [2d-3[=19 | | -2x^2+12^2-10=0 | | -2p+21=11 | | 3.652-a;a=1.41 | | 3x-9=8-4 |